Le Phosphobéryllate d'Ammonium

PAR M. T. AVERBUCH-POUCHOT, A. DURIF, J. COING-BOYAT ET J. C. GUITEL Laboratoire des Rayons X, CNRS, 166 X, 38042 Grenoble Cédex, France

(Reçu le 28 juin 1976, accepté le 8 juillet 1976)

Abstract. $\text{NH}_4\text{P}_3\text{Be}_2\text{O}_{10}$, monoclinic, four formula units in a cell, $a = 12 \cdot 202$ (8), $b = 8 \cdot 645$ (3), $c = 8 \cdot 949$ (3) Å, $\beta = 117 \cdot 41$ (5)°, space group C2/c. The complex anion P₃Be₂O₁₀ is a three-dimensional network of BeO₄ and PO₄ tetrahedra. The final *R* value is 0.02.

Introduction. La préparation chimique et les principales caractéristiques du $NH_4P_3Be_2O_{10}$ ont déjà été

Tableau 1.	Coordonnées atomiques ($(\times 10^{5})$)
------------	-------------------------	-------------------	---

	х	У	Ζ	Bea
P(1)	18242 (2)	18581 (2)	24572 (3)	0.51
P(2)	0	38353 (3)	25000	0.58
O(E11)	19488 (7)	11733 (7)	10003 (8)	0.93
O(E12)	27552 (6)	31104 (7)	33844 (9)	0.86
O(E13)	17066 (6)	6620 (3)	36050 (8)	0,95
O(L12)	4893 (6)	27255 (8)	15290 (8)	0,80
O(E21)	10564 (6)	47539 (8)	37725 (9)	1,00
NH₄	0	80260 (20)	25000	1,95
Be	25610 (10)	45800 (10)	43900 (10)	0,74

décrites (Bagieu-Beucher, Durif & Averbuch-Pouchot, 1976). Le cristal utilisé était un fragment de prisme approximativement cubique de 0,12 mm d'arête. 1570 réflexions indépendantes ont été mesurées à l'aide d'un diffractomètre automatique Philips PW 1100 utilisant la longueur d'onde du molybdène et muni d'un monochromateur de graphite. Les mesures ont été effectuées de 3 à 35° (θ) en balayage ω . Le fond continu était mesuré durant 10 s à chaque extrémité du domaine de balayage qui était de 1,20°. Ce balayage était effectué à la vitesse de 0,03° s⁻¹. Aucune correction d'absorption n'a été effectuée.

L'interprétation de la fonction de Patterson permet de localiser rapidement les atomes de phosphore. A partir de ces positions, des synthèses de Fourier successives font apparaître sans difficultés tous les atomes d'oxygène; puis une dernière synthèse de Fourierdifference permet de localiser les atomes de béryllium et d'ammonium. Le Tableau 1 donne les coordonnées

Tableau 2. Facteurs anisotropes de température $(\times 10^5)$

	$\beta(11)$	β(22)	$\beta(33)$	β(12)	β(13)	β (23)
P(1)	137 (2)	147 (2)	184 (3)	10(1)	76 (2)	-9 (2)
P(2)	101 (2)	168 (3)	309 (4)	0	85 (2)	0
O(É11)	294 (5)	257 (7)	298 (8)	87 (4)	171 (5)	-10(6)
O(E12)	167 (4)	243 (7)	420 (9)	-30 (4)	123 (5)	90 (6)
O(E13)	270 (5)	285 (7)	249 (8)	-50 (4)	101 (5)	53 (6)
O(L12)	146 (4)	294 (7)	304 (8)	48 (4)	80 (5)	-28 (6)
O(E21)	139 (4)	304 (7)	544 (9)	-59 (4)	127 (5)	-165 (6)
NH.	407 (10)	388 (14)	764 (20)	0	43 (12)	0
Be	170 (7)	233 (11)	284 (13)	-23 (7)	96 (8)	1 (9)

Fig. 1. Projection de l'anion Be₂P₃O₁₀ selon b.

Fig. 2. Projection de l'anion BeP₃O₁₀ selon c.

Tableau	3.	Principales	distances	interatomiques	et
		angles	s de liaison		

Fableau 4.	Amplitudes et directions des axes principaux
	des ellipsoïdes thermiques

	ang	gles de liais	on		
Les d	istances P(1)–O	, P(2)–O et B	e–O sont soul	ignées.	
P(1)	O(E11)	O(E12)	O(E13)	O(L12)	P(1)
(E11)	1,5020 (9)	2,5282 (9)	2,520(1)	2,444 (1)	
)(E12)	114,09 (4)	1,5110 (6)	2,528(1)	2,507 (9)	P(2)
)(E13)	113,57 (4)	113,57 (4)	1,5102 (8)	2,5098 (9)	
)(L12)	102,45 (4)	105,81 (4)	106,02 (4)	1,6309 (7)	O(E11)
P(2)	O(E21)	O(E21)'	O(L12)	O(L12)'	
(E21)	1 4958 (6)	2.535(1)	2.5111(1)	2.497 (1)	O(E12)
(E21)'	$\frac{115.87(4)}{115.87(4)}$	1,4958 (6)	2.497(1)	2.5111(1)	
(L12)	109.20 (4)	$\frac{108.31}{108.31}$	1,5842 (8)	2.521(1)	O(E13)
(L12)'	108,31 (4)	109,20 (4)	105,45 (4)	1,5842 (8)	
()		, ,	, , ,		O(L12)
Be	O(E21)	O(E11)	O(E12)	O(E13)	- (,
)(<i>E</i> 21)	1,662(1)	2,649 (1)	2,664(1)	2,6814 (8)	O(E21)
)(<i>E</i> 11)	108,41 (8)	1,603 (1)	2,6948 (9)	2,572(1)	-()
D(E12)	107,76 (8)	112,61 (8)	1,636 (1)	2,681 (1)	
)(E13)	110,12 (8)	106, 45 (8)	111,45 (8)	1,608 (1)	NH4
P(1)—P(2) P(1)—P(1)	2,8207 (2 4,452 (2)	3) Be—	P(1) 2 P(1) 2	,811 (1) ,850 (1)	Be
P(1)-O(L	12)	Be-	P(1) 2	,884 (1)	
-P(2)	112,64 (4) $2 \times Be$	P(2) 2	,859(1)	tomná
$2 \times \mathrm{NH}_4 - 2 \times \mathrm{NH}_4 - $	O(E21) O(E13) O(E11)	3,099 (1) 2,935 (1) 3,015 (1)			tués r surées élimine
					* La

U(Å)	θ°/a	θ°/b	θ°/c
0,091	18	78	103
0,078	94	127	42
0,071	108	39	51
0,100	103	90	15
0,080	90	0	90
0,076	13	90	105
0,140	30	65	98
0,100	92	53	114
0,076	120	47	45
0,123	99	117	32
0,099	13	103	113
0,086	80	31	70
0,138	24	114	115
0,103	71	43	68
0,080	104	123	34
0,118	54	42	124
0,096	84	71	38
0,084	37	126	105
0,146	100	120	33
0,099	136	49	58
0,081	48	55	83
0,204	148	90	31
0,134	58	90	59
0,121	90	0	90
0,105	29	119	114
0,095	89	88	29
0,090	61	29	105

pérature.* Les derniers cycles d'affinement effecs n'utilisaient que 1505 des 1570 réflexions meées, les réflexions telles que $F_c < 10$ ayant été ninées.

La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 32045: 12 pp.). On peut en obtenir des copies atomiques de cet arrangement après une série d'affinements qui conduisent à une valeur finale du facteur R en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre. de 0,02. Le Tableau 2 donne les facteurs anisotropes de

Discussion. La caractéristique la plus intéressante de cet arrangement atomique est l'existence d'un anion complexe tridimensionnel Be₂P₃O₁₀ formé de tétraèdres PO₄ et BeO₄. On peut le décrire de la manière suivante: des groupements P₃O₁₀ sensiblements alignés selon la direction **a** dans des plans situés en $z = \frac{1}{4}$ et $\frac{3}{4}$ sont reliés entre eux par l'intermédiaire des tétraèdres BeO₄ qui en assurent la liaison à la fois dans les plans et entre les plans. La Fig. 1 donne une représentation de cet anion en projection selon **b**. La Fig. 2 donne une représentation de position en projection selon **c** mettant en évidence la posi-

tion des ions ammonium dans des canaux dirigés selon la direction c.

Le Tableau 3 donne les principales distances interatomiques et angles de liaison dans cet arrangement. Le Tableau 4 donne les amplitudes et les directions des axes principaux des ellipsoïdes thermiques.

Référence

BAGIEU-BEUCHER, M., DURIF, A. & AVERBUCH-POUCHOT, M. T. (1976). J. Appl. Cryst. 9, 52.

Acta Cryst. (1977). B33, 205–207

Diiodotricarbonylbis(diphenylarsino)methanetungsten(II)

BY MICHAEL G. B. DREW AND ANDREW P. WOLTERS

Department of Chemistry, The University, Whiteknights, Reading RG6 2AD, England

(Received 1 June 1976; accepted 19 July 1976)

Abstract. $C_{28}H_{22}As_2I_2O_3W$, $M_r = 994.0$, monoclinic, a = 11.281(5), b = 16.880(6), c = 16.519(6) Å, $\beta = 111.51(20)^\circ$, U = 2926.5 Å³, $d_m = 2.23(3)$, Z = 4, $d_c = 2.23$ g cm⁻³, Mo K α radiation, $\lambda = 0.7107$ Å, μ (Mo K α) = 86.2 cm⁻¹, space group $P2_1/c$ from systematic absences 0k0: k = 2n + 1, h0l: l = 2n + 1. In the monomeric complex, the W atom is seven-coordinate with a capped octahedral environment and is bonded to one carbonyl group in the capping position [1.93(2) Å], two carbonyls [1.96 (2), 1.93(2) Å] and one As atom [2.605(3) Å] in the capped face, and two I atoms [2.859(2), 2.830(2) Å] and an As atom [2.680(2) Å] in the uncapped face. 2312 independent reflexions, measured by counter methods, have been refined to R 0.058.

Introduction. Crystals of WI₂(CO)₃(dpam),

dpam = bis(diphenylarsino)methane, were prepared as described by Colton & Rix (1970). A crystal with dimensions $ca \ 0.2 \times 0.1 \times 0.1$ mm was mounted with c* parallel to the instrument axis of a General Electric XRD 5 apparatus which was used to measure diffraction intensities and cell dimensions. It was equipped with a manual goniostat, scintillation counter and pulse-height discriminator. Mo X-radiation was used, filtered with Zr. 3832 reflexions with $2\theta < 45^{\circ}$ were measured by the stationary-crystal stationary-counter method of which 2312 with $I > 2\sigma$ (I) were used in subsequent calculations. An absorption correction was applied to the data (Stewart, 1972).

The structure was solved from the Patterson function and successive Fourier syntheses. Refinement by full-matrix least squares gave R 0.058. W, I and As atoms were refined anisotropically and C and O isotropically. In the final cycle of refinement no shift was $>0.10\sigma$. Final positions are listed in Table 1 and the thermal parameters in Table 2. The weighting scheme which was chosen to give average values of $w \Delta^2$ for groups of reflexions independent of values of F_o and $\sin \theta / \lambda$ was $\sqrt{w} = 1$ for $F_o < 43$ and $43/F_o$ for $F_o > 43$. Calculations were performed on a CDC 7600 computer at the University of London Computer Centre with the X-RAY system (Stewart, 1972). Atomic scattering factors for all atoms were taken from International Tables for X-ray Crystallography (1974) as were the corrections for the real and imaginary parts of the anomalous dispersion for the W, I and As. The anisotropic thermal parameters are defined as $\exp(-2\pi^2 \sum_i \sum_j U_{ij} h_i h_j b_i b_j)$ (*i*, *j* = 1,2,3), where b_i is the *i*th reciprocal cell dimension. The isotropic thermal parameters are defined as $\exp\left(-8\pi^2 U \sin^2 \theta/\lambda^2\right)$. The unobserved reflexions showed no large discrepancies and a final difference Fourier map showed no significant peaks. The molecular dimensions are listed in Table 3.*

Discussion. The structure of $WI_2(CO)_3(dpam)$ is shown in Fig. 1. The W atom is seven-coordinate in a capped

^{*} Lists of structure factors and phenyl ring dimensions have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31996 (9 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.